Influence of Alkyl Substituent on the Asynchronous Transition Structure of Boron-Catalyzed Diels-Alder Cycloaddition of α, β-Unsaturated Aldehydes with 1,1-Dimethyl-1,3-butadiene Derivatives

W.-M. Dai,* C. W. Lau, S. H. Chung, and Y.-D. Wu
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received July 28, 1995

The Diels-Alder cycloaddition (DACA) has been demonstrated to be a powerful synthetic method for multiple carbon-carbon bond formation in a regio- and stereoselective manner. ${ }^{1}$ Under Lewis acid catalysis, the DACA features additional merits in the aspects of improved regio- and stereoselectivity, ${ }^{2}$ low-temperature reaction conditions, and enantioselective synthesis. ${ }^{3}$ Recently, with $a b$ initio calculations, Houk and co-worker ${ }^{4}$ have located the asynchronous transition structures (TS') for the BH_{3}-catalyzed cycloaddition of butadiene with acrolein. In this paper, we report on the steric effects of alkyl substituents in the diene and the dienophile on the transition structure (TS) of the DACA supported by both experimental and $a b$ initio calculation results. ${ }^{5}$

DACA has been known to be sensitive to steric interaction. It decreases the reaction rate remarkably when 1,1 -dialkyl-1,3-butadienes are used. ${ }^{6}$ Reaction of 1,1-dimethyl-1,3-butadienes has been performed only with activated dienophiles ${ }^{6,7}$ at room temperature. For acrylic acid and 2-chloroacrylonitrile, drastic reaction conditions should be applied. ${ }^{8}$ However, the $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$-catalyzed cycloaddition of $1 \mathbf{a}^{9}$ with acrolein can be carried out at $-78^{\circ} \mathrm{C} .{ }^{10}$ The regioselectivity of cycloaddition of 1,1-dimethyl-1,3butadienes with unsymmetrical dienophiles remains very high under both thermal ${ }^{8}$ and catalyzed ${ }^{10}$ conditions to produce the "ortho" adducts exclusively. We investigated the boron-mediated DACA of $\mathbf{1 a}, \mathbf{b}$ with a number of α, β unsaturated aldehydes $\mathbf{2 a}-\mathbf{e}$ and noted a significant influence of the β substituents in the dienophiles $2 c-e$ on the mode of the cycloaddition (Scheme 1 and Table 1).

Reaction of $\mathbf{1 a}$ with $\mathbf{2 a} \mathbf{a}^{10}$ and $\mathbf{2 b}$ was carried out in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under the catalysis of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (0.5 mol equiv) at $-80^{\circ} \mathrm{C}$ to provide 3a,b in good yield (Table 1, entries 1 and 2). The regiochemistry of the cycloaddition of $\mathbf{2 b}$ remained the same as that for 2a to give only the "ortho" adduct 3b. However, the β methyl group in 2c behaved

[^0]Scheme 1

4a: $R^{1}=A c, R^{2}=M e \quad$ 4d: $R^{1}=B n, R^{2}=E t$
4b: $R^{1}=B n, R^{2}=M e \quad$ 4e: $R^{1}=B n, R^{2}=P r$
4c: $R^{1}=A c, R^{2}=E t$
remarkably differently in the reaction with 1. The 3,6-dihydro-6,6-dimethyl-2H-pyran derivative 4 a was formed (37%) in addition to $\mathbf{3 c}$ (16%) from 1a and 2c (Scheme 1 and Table 1 , entry 3). The competition between the normal and hetero DACAs of 1a with 2c was confirmed to be a general phenomenon for β alkyl-substituted α, β unsaturated aldehydes. It was found that with a bulkier β alkyl group in 2 the overall reaction rate decreased accordingly. This can be shown by the reduction in the conversion of 1a from 66% to 27% in the reaction with 2 c and 2 d , respectively, in the presence of 0.5 mol equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (Table 1, entries 3 and 6). An increased amount of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ favored the formation of the normal Diels-Alder adduct; the product ratio 3:4 increased from 30-40:70-60 for 0.5 mol equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (Table 1, entries 3 and 6) to ca. 60:40 for 1.0 mol equiv of BF_{3}.OEt_{2} (Table 1, entries 4, 7, and 9). BBr_{3} was found to be a more efficient catalyst for the reaction of 1 with $2 c-e$ (Table 1, entries 5,8 , and 10). In general, the cycloadditions catalyzed by BBr_{3} completed within 5 h at -85 ${ }^{\circ} \mathrm{C}$ with 100% conversion of the diene. But, both adducts 3 and 4 were isolated in favor of $4(3: 4=c a .35: 65)$. The relative stereochemistry of $\mathbf{3 c}-\mathbf{g}$ was assigned as trans (R^{2} and CHO) based on the vicinal proton coupling constants of 11.7 Hz between $\mathrm{R}^{3}(=\mathrm{H})$ and its adjacent proton (in gem position with R^{2} in $\mathbf{3 c - g}$). The latter proton ($2.1-2.3 \mathrm{ppm}$) is significantly deshielded by the nearby carbonyl group. These results might suggest that the cycloaddition proceeds with a concerted mechanism.
The questions to the above-described observations are as follows: (a) influence of the gem dimethyl groups in the diene on the TS and regioselectivity of the cycloaddition; (b) origin of the different profiles of the alkyl group in the α or β position of the dienophiles; and (c) factor promoting the hetero DACA. According to Houk's asynchronous TS model, ${ }^{4}$ the gem dimethyl groups in 1 can better stabilize the positive charge developed on the diene part in TS. This should favor one of the two possible approaches between the asymmetrical reactants. Steric interaction also prevents the σ bond formation in TS involving the gem dimethyl carbon center and determines the regiochemistry of the adduct. Both electronic and steric effects of the gem dimethyl groups in 1 should distort the TS further from that of butadiene. We performed the $a b$ initio calculations at the RHF/3-21G level for the reaction of 1,1-dimethyl-1,3-butadiene with 2a and 2c catalyzed by BF_{3}. The most stable TS' found for the normal DACA with 2a (A) and 2c (C) are shown in Chart $1 .{ }^{11}$ A highly asymmetrical TS A with one forming bond longer than $3.4 \AA\left(2.96 \AA\right.$ for butadien $\left.{ }^{4}\right)$

Table 1. Boron-Mediated Diels-Alder Cycloadditions of Dienes 1 with α, β-Unsaturated Aldehydes 2^{a}

entry	diene (1)	dienophile (2)	Lewis acid (equiv)	$T\left({ }^{\circ} \mathrm{C}\right)$, time (h)	conversn b (\%)	products ${ }^{c}$ (\%)
1	1a: $\mathrm{R}^{1}=\mathrm{Ac}$	2a: $\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.5)$	-80, 12	100	3a (67)
2	1a	2b: $\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.5)$	-80, 16	100	3b (52)
3	1a	2c: $\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.5)$	-80, 34; -50,69	66	3c (16); 4a (37)
4	1b: $\mathrm{R}^{1}=\mathrm{Bn}$	2c	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0)$	$-60,112$	67	3d (50); 4b (37)
5	1b	2c	BBr_{3} (1.0)	-85, 4	100	3d (28); 4b (39)
6	1a	2d: $\mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{H}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.5)$	-40, 72	27	3e (12); 4c (18)
7	1a	2d	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0)$	$-40,62$	62	3e (26); $\mathbf{4 c}$ (15)
8	1b	2d	$\mathrm{BBr}_{3}(0.5)$	-85, 5	100	3f (22); 4d (45)
9	1b	2e: $\mathrm{R}^{2}={ }^{n} \mathrm{Pr}, \mathrm{R}^{3}=\mathrm{H}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0)$	-40, 72	83	$3 \mathbf{g}(54) ; \mathbf{4 e}$ (32)
10	1b	2e	$\mathrm{BBr}_{3}(0.5)$	-85,5	100	$3 \mathbf{g}(24) ; \mathbf{4 e}$ (43)

${ }^{a}$ See the supporting information for detailed reaction conditions. ${ }^{b}$ Calculated based on the recovered amount of $\mathbf{1}$. ${ }^{c}$ Yields refer to the isolated homogenous materials and calculated on the consumed diene 1.

Chart 1

A (endo/s-cis): -742.89032

C (endo/s-cis): -781.71226

B (exo/s-cis): -742.89185

D (exo/s-cis): -781.71657
is impressive. Thereby, an α substituent in 2 should not disturb the TS to a visible extent due to the longer contact distance. This explains the observed regioselectivity of $\mathbf{2 b}$. Introduction of a β methyl group into the dienophile has little effect on the geometry of TS \mathbf{C} compared with A. However, the calculated activation energy E_{a} increases from $10.9 \mathrm{kcal} / \mathrm{mol}$ for \mathbf{A} up to $15.0 \mathrm{kcal} / \mathrm{mol}$ for \mathbf{C}, in accord with the diminished reactivity of $\mathbf{2 c}-\mathbf{e}$. The main contribution to the ΔE_{a} of $4.1 \mathrm{kcal} / \mathrm{mol}$ is the steric interaction between the β methyl group in $2 \mathbf{c}$ and the diene terminal hydrogen atoms as indicated by the close H / H contact distances of 2.32 and $2.51 \AA$. It was known that, under the catalysis of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, alkoxy-containing electron-rich dienes undergo hetero DACA with 2c and trans-cinnamaldehyde to form γ-pyrones. ${ }^{12}$ However, the hetero DACA is seldom seen for alkyl-substituted dienes. The unusual results for $2 \mathbf{c}-\mathbf{e}$ may be associated with the particular diene 1 having gem dimethyl groups. TS' B and \mathbf{D} in Chart 1 correspond to BF_{3}-catalyzed hetero DACA of 1,1-dimethyl-1,3-butadiene with 2a and 2c, respectively. ${ }^{13}$ Calculations on the hetero DACA of 2c revealed that the exo/s-trans TS \mathbf{E} (see the supporting information) has an $E_{\text {a }}$ value of $15.0 \mathrm{kcal} / \mathrm{mol}$ which is higher than the exo $/ s$-cis TS D $\left(E_{\mathrm{a}}=12.3 \mathrm{kcal} / \mathrm{mol}\right)$. The corresponding exo/s-cis TS B for 2a possesses an E_{a} value
(11) Five TS' $\mathbf{A}-\mathbf{D}$ (Chart 1) and \mathbf{E} (see the supporting information) were located using the GAUSSIAN 94 program. Frequency calculations indicated that each TS has one imaginary frequency which corresponds to the motion of the $\mathrm{C}-\mathrm{C}$ bond formation.
of $9.9 \mathrm{kcal} / \mathrm{mol}$. Thus, a β methyl group in the dienophile raises the activation energy for the hetero DACA TS' \mathbf{B} and \mathbf{D} by $2.4 \mathrm{kcal} / \mathrm{mol}$, which is visibly lower than the energy gap between \mathbf{A} and \mathbf{C}. These calculation results indicate that the β alkyl group in $2 \mathbf{c}-\mathbf{e}$ reduces the reactivity of both the normal and hetero DACAs with less extent to the latter reaction so that both possible reaction pathways for α, β-unsaturated aldehydes become real in the reaction with 1a,b. Due to the greater asynchronicity in the calculated TS', large dipole moments were observed ($11.05,8.60,11.27$, and 8.75 D for $\mathrm{TS}^{\prime} \mathbf{A}-\mathbf{D}$, respectively). The effect of solvation on TS has been discussed for the hetero DACA between formaldehyde and 1,3-butadiene. ${ }^{13}$ Solvation effect on TS' has not been performed in our study and may deserve further attention.

In summary, we have been successful in performing the cycloaddition of $\mathbf{1 a}, \mathbf{b}$ with a series of α, β-unsaturated aldehydes catalyzed by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ or BBr_{3} at low temperature. The phenomenal influence of the β alkyl group in $\mathbf{2 c}-\mathbf{e}$ on the mode of the cycloaddition could be interpreted by the steric interaction in the asynchronous TS. The current studies on both experiments and molecular orbital calculations provide further evidence, using a steric probe, to support the asynchronous TS for the Lewis acid-catalyzed normal and hetero DACAs. The adducts $\mathbf{3 a}-\mathbf{g}$ possess the structure of the A-ring fragment of Taxol. ${ }^{14}$ They could be used for the synthesis of taxiods with modified taxane skeleton.

Acknowledgment. We thank Prof. K. N. Houk (University of California at Los Angeles) for his advice on the $a b$ initio calculations. Financial support from Hong Kong Research Grants Council (HKUST203/93E) and the Department of Chemistry, HKUST, is acknowledged.

Supporting Information Available: Representative experimental procedure for the reaction of $\mathbf{1 b}$ with $\mathbf{2 c},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{3 a}-\mathbf{g}$ and $\mathbf{4 a}-\mathbf{e}, Z$-matrices and total energies for $\mathrm{TS}^{\prime} \mathbf{A}-\mathbf{E}$, 1,1-dimethyl-1,3-butadiene (\mathbf{F}), $\mathrm{BF}_{3}{ }^{-}$ complexed 2a (\mathbf{G}), and BF_{3}-complexed $2 \mathbf{c}(\mathbf{H})$ (33 pages).

J0951384S

[^1]
[^0]: * To whom correspondence should be addressed. Phone: (852) 2358 7365. Fax: (852) 2358-1594. E-mail: chdai@usthk.ust.hk.
 (1) Ho, T.-L. Carbocycle Construction in Terpene Synthesis; VCH Publishers, Inc.: New York, 1988; pp 329-432.
 (2) Inukai, T.; Kojima, T. J. Org. Chem. 1971, 36, 924
 (3) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007.
 (4) Birney D. M.; Houk, K. N. J. Am. Chem. Soc. 1990, 112, 4127.
 (5) Dai, W.-M.; Lau, C. W. 209th ACS National Meeting, Anaheim, CA, April 2-6, 1995; American Chemical Society, Washington, D.C., 1995; Abstract ORGN 033
 (6) Stewart, C. A., Jr. J. Org. Chem. 1963, 28, 3320.
 (7) Gassman, P. G.; Singleton, D. A. Tetrahedron Lett. 1987, 28, 5969.
 (8) (a) Erman, W. F.; Stone, L. C. J. Am. Chem. Soc. 1971, 93, 2821. (b) Nicolaou, K. C.; Hwang, C.-K.; Sorensen, E. J.; Clairborne, C. F. J Chem. Soc., Chem. Commun. 1992, 1117.
 (9) (a) Kazi, M. A.; Khan, I. H.; Khan, M. H. J. Chem. Soc. 1964 1512. (b) Alkonyi, I.; Szabo, D. Chem. Ber. 1967, 2773.
 (10) Hitchcock, S. A.; Pattenden, G. Tetrahedron Lett. 1992, 33 4843.

[^1]: (12) (a) Danishefsky, S.; Kerwin, J. F., Jr. J. Org. Chem. 1982, 47, 3183. (b) Larson, E. R.; Danishefsky, S. J. Am. Chem. Soc. 1983, 105, 6715. (c) Danishefsky, S.; Larson, E. R.; Springer, J. P. J. Am. Chem. Soc. 1985, 107, 1274.
 (13) McCarrick, M. A.; Wu, Y.-D.; Houk, K. N. J. Org. Chem. 1993, 58, 3330.
 (14) Nicolaou, K. C.; Dai, W.-M.; Guy, R. K. Angew. Chem., Int. Ed. Engl. 1994, 33, 15.

